新闻资讯

分享金雨佳昌新鲜事、行业资讯等信息

2021/9/26 返回列表

想跟进这条吗?给我来源链接或榜单截图/时间区间(赛季/统计口径),我可以还原前10名、关键数据和简短解读。也可以直接按你 # 读取你的数据文件 # 统一列名 df_out = pd.DataFrame() # 基础衍生 # 速率与比率 # 过滤样本:分钟门槛与前锋位置(如果没有位置列就仅按分钟过滤) # Z-score 标准化并加权综合 z_npG90 = z(df_f[[[META.DESCRIPTION]]amp;quot;npG/90[[META.DESCRIPTION]]amp;quot;]) # 权重可按需调整 # 排序与输出

Clarifying user request

I need to respond to the user about their sentence in Chinese, which translates to a headline about efficient forwards in European leagues. Since they didn’t ask a specific question, it’s unclear what they want—maybe details, a summary, or specific stats. I should ask a clarifying question to see if they want an article or analysis. However, since I can't browse real-time information, I should inquire about the source or date of the ranking they're interested in.Gathering user preferences

I should provide possible interpretations of the user’s request. They might want a quick news summary, a data table, or comparisons related to scoring efficiency per 90 minutes. I can offer to draft a post or create an infographic, but I need to ask which league or season they’re interested in. I should be concise and explain metrics like goals per 90, shots per goal, and conversion rate. Then I can propose a method to compute efficiency using a Python snippet if they share their dataset. That could be really useful!Suggesting player names

I can suggest names known for their scoring efficiency, like Haaland, Kane, Mbappe, Lautaro Martinez, and Victor Osimhen. Serhou Guirassy had an impressive start as a dark horse in the 2023/24 season, and Artem Dovbyk was the top scorer in La Liga that year. However, since it's now 2025, I shouldn't assume too much. I should ask the user if they want details on the dark horse, a top 10 list, or help crafting content. Also, I could offer to create an infographic once they provide specifics.Proposing steps for user assistance

I want to start by asking the user which outlet and season they’re referencing. If they want me to draft a post, I can create a 120-word Chinese news brief and a placeholder for the top 10 players. I could also offer a Python snippet to compute efficiency rankings if they provide a CSV with necessary stats like goals and shots. However, I need to ensure I have approval to access any data.

I’ll start my Chinese response with a quick reaction asking for their source or timeframe, then outline common efficiency metrics, and ask if they want me to calculate a leaderboard based on their data along with the code snippet.Defining efficiency calculations

I want to compute various efficiency metrics such as non-penalty goals (npG), goals per 90 minutes, shots per 90, and conversion rates. I could define an efficiency score as a composite of z-scores or a weighted sum with certain metrics. But it might be better to keep things simpler by just showing code that computes the ranking and prints out the top 15 players.

Also, I could offer to draft a news copy with placeholders for specific players, but I should avoid making assumptions about names. I can provide options like a quick news article, data recalculation from a CSV, or 10 headline options.

榜单截\n

I’ll organize my final response in Chinese with concise bullet points and include a short social media template outlining the title, introduction, key points, and extras while ensuring it's within formatting constraints. Let’s get writing!

想跟进这条吗?给我来源链接或榜单截图/时间区间(赛季/统计口径),我可以还原前10名、关键数据和简短解读。也可以直接按你的数据算一版“效率榜”。

你可能关心的效率口径

  • 非点球进球/90(npG/90)、进球/90、分钟/球
  • 转化率(进球/射门)、射正率(射正/射门)
  • 非点球进球−xG per 90(把握机会度)
  • 触球进禁区/射门(若有)
  • 样本门槛:≥900分钟,位置为前锋

需要我用数据复算?把CSV/Excel丢给我(列里有球员、球队、分钟、进球、点球、射门、射正、xG 就行)。下面是一段可直接跑的脚本,会产出“效率综合分”与榜单。

列名\n

# file: rank_forward_efficiency.pyimport pandas as pdimport numpy as np# 读取你的数据文件# 期望列:Player,Squad,Min,Gls,PK,Sh,SoT,xG,Pos(列名大小写可不同)df = pd.read_csv([[NEWS.CONTENT_HTML]]quot;players_stats.csv[[NEWS.CONTENT_HTML]]quot;)# 统一列名cols = {c.lower(): c for c in df.columns}def get(col, default=0):    for k in cols:        if k == col.lower():            return df[cols[k]].fillna(default)    return pd.Series([default]*len(df))df_out = pd.DataFrame()df_out[[[NEWS.CONTENT_HTML]]quot;Player[[NEWS.CONTENT_HTML]]quot;] = get([[NEWS.CONTENT_HTML]]quot;Player[[NEWS.CONTENT_HTML]]quot;)df_out[[[NEWS.CONTENT_HTML]]quot;Squad[[NEWS.CONTENT_HTML]]quot;]  = get([[NEWS.CONTENT_HTML]]quot;Squad[[NEWS.CONTENT_HTML]]quot;)df_out[[[NEWS.CONTENT_HTML]]quot;Pos[[NEWS.CONTENT_HTML]]quot;]    = get([[NEWS.CONTENT_HTML]]quot;Pos[[NEWS.CONTENT_HTML]]quot;, [[NEWS.CONTENT_HTML]]quot;[[NEWS.CONTENT_HTML]]quot;)mins = get([[NEWS.CONTENT_HTML]]quot;Min[[NEWS.CONTENT_HTML]]quot;).astype(float)gls  = get([[NEWS.CONTENT_HTML]]quot;Gls[[NEWS.CONTENT_HTML]]quot;).astype(float)pk   = get([[NEWS.CONTENT_HTML]]quot;PK[[NEWS.CONTENT_HTML]]quot;).astype(float)sh   = get([[NEWS.CONTENT_HTML]]quot;Sh[[NEWS.CONTENT_HTML]]quot;).astype(float)sot  = get([[NEWS.CONTENT_HTML]]quot;SoT[[NEWS.CONTENT_HTML]]quot;).astype(float)xg   = get([[NEWS.CONTENT_HTML]]quot;xG[[NEWS.CONTENT_HTML]]quot;).astype(float)# 基础衍生mp90 = mins / 90.0npG = gls - pkdf_out[[[NEWS.CONTENT_HTML]]quot;Min[[NEWS.CONTENT_HTML]]quot;] = minsdf_out[[[NEWS.CONTENT_HTML]]quot;Gls[[NEWS.CONTENT_HTML]]quot;] = glsdf_out[[[NEWS.CONTENT_HTML]]quot;npG[[NEWS.CONTENT_HTML]]quot;] = npGdf_out[[[NEWS.CONTENT_HTML]]quot;Sh[[NEWS.CONTENT_HTML]]quot;]  = shdf_out[[[NEWS.CONTENT_HTML]]quot;SoT[[NEWS.CONTENT_HTML]]quot;] = sotdf_out[[[NEWS.CONTENT_HTML]]quot;xG[[NEWS.CONTENT_HTML]]quot;]  = xg# 速率与比率safe = lambda s: s.replace([np.inf, -np.inf], np.nan).fillna(0)df_out[[[NEWS.CONTENT_HTML]]quot;G/90[[NEWS.CONTENT_HTML]]quot;]      = safe(gls / mp90)df_out[[[NEWS.CONTENT_HTML]]quot;npG/90[[NEWS.CONTENT_HTML]]quot;]    = safe(npG / mp90)df_out[[[NEWS.CONTENT_HTML]]quot;Sh/90[[NEWS.CONTENT_HTML]]quot;]     = safe(sh / mp90)df_out[[[NEWS.CONTENT_HTML]]quot;Conv%[[NEWS.CONTENT_HTML]]quot;]     = safe(gls / sh)       # 进球/射门df_out[[[NEWS.CONTENT_HTML]]quot;SoT%[[NEWS.CONTENT_HTML]]quot;]      = safe(sot / sh)       # 射正/射门df_out[[[NEWS.CONTENT_HTML]]quot;Min/G[[NEWS.CONTENT_HTML]]quot;]     = safe(mins / gls).replace(0, np.nan).fillna(np.inf)df_out[[[NEWS.CONTENT_HTML]]quot;(npG-xG)/90[[NEWS.CONTENT_HTML]]quot;]= safe((npG - xg) / mp90)# 过滤样本:分钟门槛与前锋位置(如果没有位置列就仅按分钟过滤)is_fw = df_out[[[NEWS.CONTENT_HTML]]quot;Pos[[NEWS.CONTENT_HTML]]quot;].str.contains([[NEWS.CONTENT_HTML]]quot;FW|ST|CF[[NEWS.CONTENT_HTML]]quot;, case=False, na=False)mask = (mins [[NEWS.CONTENT_HTML]]gt;= 900) [[NEWS.CONTENT_HTML]]amp; ( (is_fw) | (df_out[[[NEWS.CONTENT_HTML]]quot;Pos[[NEWS.CONTENT_HTML]]quot;] == [[NEWS.CONTENT_HTML]]quot;[[NEWS.CONTENT_HTML]]quot;) )df_f = df_out.loc[mask].copy()# Z-score 标准化并加权综合def z(s):    s = s.replace([np.inf, -np.inf], np.nan)    return (s - s.mean()) / (s.std(ddof=0) + 1e-9)z_npG90   = z(df_f[[[NEWS.CONTENT_HTML]]quot;npG/90[[NEWS.CONTENT_HTML]]quot;])z_conv    = z(df_f[[[NEWS.CONTENT_HTML]]quot;Conv%[[NEWS.CONTENT_HTML]]quot;])z_sot     = z(df_f[[[NEWS.CONTENT_HTML]]quot;SoT%[[NEWS.CONTENT_HTML]]quot;])z_npGxG90 = z(df_f[[[NEWS.CONTENT_HTML]]quot;(npG-xG)/90[[NEWS.CONTENT_HTML]]quot;])# 权重可按需调整score = 0.45*z_npG90 + 0.25*z_conv + 0.15*z_sot + 0.15*z_npGxG90df_f[[[NEWS.CONTENT_HTML]]quot;EffScore[[NEWS.CONTENT_HTML]]quot;] = score# 排序与输出cols_show = [[[NEWS.CONTENT_HTML]]quot;Player[[NEWS.CONTENT_HTML]]quot;,[[NEWS.CONTENT_HTML]]quot;Squad[[NEWS.CONTENT_HTML]]quot;,[[NEWS.CONTENT_HTML]]quot;Min[[NEWS.CONTENT_HTML]]quot;,[[NEWS.CONTENT_HTML]]quot;Gls[[NEWS.CONTENT_HTML]]quot;,[[NEWS.CONTENT_HTML]]quot;npG[[NEWS.CONTENT_HTML]]quot;,[[NEWS.CONTENT_HTML]]quot;G/90[[NEWS.CONTENT_HTML]]quot;,[[NEWS.CONTENT_HTML]]quot;npG/90[[NEWS.CONTENT_HTML]]quot;,[[NEWS.CONTENT_HTML]]quot;Conv%[[NEWS.CONTENT_HTML]]quot;,[[NEWS.CONTENT_HTML]]quot;SoT%[[NEWS.CONTENT_HTML]]quot;,[[NEWS.CONTENT_HTML]]quot;(npG-xG)/90[[NEWS.CONTENT_HTML]]quot;,[[NEWS.CONTENT_HTML]]quot;EffScore[[NEWS.CONTENT_HTML]]quot;]ranked = df_f.sort_values([[NEWS.CONTENT_HTML]]quot;EffScore[[NEWS.CONTENT_HTML]]quot;, ascending=False)[cols_show].reset_index(drop=True)print(ranked.head(15).to_string(index=False, formatters={    [[NEWS.CONTENT_HTML]]quot;Conv%[[NEWS.CONTENT_HTML]]quot;: lambda v: f[[NEWS.CONTENT_HTML]]quot;{v:.2%}[[NEWS.CONTENT_HTML]]quot;,    [[NEWS.CONTENT_HTML]]quot;SoT%[[NEWS.CONTENT_HTML]]quot;:  lambda v: f[[NEWS.CONTENT_HTML]]quot;{v:.2%}[[NEWS.CONTENT_HTML]]quot;,    [[NEWS.CONTENT_HTML]]quot;G/90[[NEWS.CONTENT_HTML]]quot;:  lambda v: f[[NEWS.CONTENT_HTML]]quot;{v:.2f}[[NEWS.CONTENT_HTML]]quot;,    [[NEWS.CONTENT_HTML]]quot;npG/90[[NEWS.CONTENT_HTML]]quot;:lambda v: f[[NEWS.CONTENT_HTML]]quot;{v:.2f}[[NEWS.CONTENT_HTML]]quot;,    [[NEWS.CONTENT_HTML]]quot;(npG-xG)/90[[NEWS.CONTENT_HTML]]quot;: lambda v: f[[NEWS.CONTENT_HTML]]quot;{v:.3f}[[NEWS.CONTENT_HTML]]quot;,    [[NEWS.CONTENT_HTML]]quot;EffScore[[NEWS.CONTENT_HTML]]quot;: lambda v: f[[NEWS.CONTENT_HTML]]quot;{v:.3f}[[NEWS.CONTENT_HTML]]quot;,}))

你想要哪个方向?

  1. 我来写一篇150字新闻速递+前三名解读(需要你提供榜单或来源)
  2. 用你的CSV复算并给出前10榜单+雷达维度解释
  3. 做社媒海报文案/标题包(10个候选,含“黑马登顶”角度)